{ "id": "2206.14345", "version": "v1", "published": "2022-06-29T01:11:02.000Z", "updated": "2022-06-29T01:11:02.000Z", "title": "On monogenity of certain pure number fields of degrees $2^r\\cdot3^k\\cdot7^s$", "authors": [ "Hamid Ben Yakkou", "Jalal Didi" ], "comment": "submitted 29/05/2022. arXiv admin note: text overlap with arXiv:2109.08765", "categories": [ "math.NT" ], "abstract": "Let $K = \\mathbb{Q} (\\alpha) $ be a pure number field generated by a complex root $\\alpha$ of a monic irreducible polynomial $ F(x) = x^{2^r\\cdot3^k\\cdot7^s} -m \\in \\Z[x]$ with $r, k, \\, \\mbox{and}\\,s $ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.", "revisions": [ { "version": "v1", "updated": "2022-06-29T01:11:02.000Z" } ], "analyses": { "subjects": [ "11R04", "11R16", "11R21", "F.2.2" ], "keywords": [ "pure number field", "monogenity", "complex root", "positive natural integers", "monic irreducible polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }