{ "id": "2206.14309", "version": "v1", "published": "2022-06-28T22:35:25.000Z", "updated": "2022-06-28T22:35:25.000Z", "title": "Linear-sized minors with given edge density", "authors": [ "Tung H. Nguyen" ], "comment": "4 pages", "categories": [ "math.CO" ], "abstract": "It is proved that for every $\\varepsilon>0$, there exists $c>0$ such that for every $t\\ge2$, every graph with chromatic number at least $t$ contains a minor with at least $ct$ vertices and at most an $\\varepsilon$ fraction of all possible edges missing. This is related to linear Hadwiger's conjecture.", "revisions": [ { "version": "v1", "updated": "2022-06-28T22:35:25.000Z" } ], "analyses": { "keywords": [ "edge density", "linear-sized minors", "linear hadwigers conjecture", "chromatic number" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }