{ "id": "2206.14273", "version": "v1", "published": "2022-06-28T20:04:24.000Z", "updated": "2022-06-28T20:04:24.000Z", "title": "Asymptotic bounds for the number of closed and privileged words", "authors": [ "Daniel Gabric" ], "categories": [ "math.CO", "cs.DM", "cs.FL" ], "abstract": "A word $w$ has a border $u$ if $u$ is a non-empty proper prefix and suffix of $u$. A word $w$ is said to be \\emph{closed} if $|w| \\leq 1$ or if $w$ has a border that occurs exactly twice in $w$. A word $w$ is said to be \\emph{privileged} if $|w| \\leq 1$ or if $w$ has a privileged border that occurs exactly twice in $w$. Let $C_k(n)$ (resp. $P_k(n)$) be the number of length-$n$ closed (resp. privileged) words over a $k$-letter alphabet. In this paper we improve existing upper and lower bounds on $C_k(n)$ and $P_k(n)$. We prove that $C_k(n) \\in \\Theta(\\frac{k^n}{n})$. Let $\\log_k^{\\circ 0}(n) = n$ and $\\log_k^{\\circ j}(n) = \\log_k(\\log_k^{\\circ j-1}(n))$ for $j\\geq 1$. We also prove that for all $j\\geq 0$ there exist constants $N_j$, $c_j$, and $c_j'$ such that \\[c_j\\frac{k^n}{n\\log_k^{\\circ j}(n)\\prod_{i=1}^j\\log_k^{\\circ i}(n)}\\leq P_k(n) \\leq c_j'\\frac{k^n}{n\\prod_{i=1}^j\\log_k^{\\circ i}(n)}\\] for all $n>N_j$.", "revisions": [ { "version": "v1", "updated": "2022-06-28T20:04:24.000Z" } ], "analyses": { "keywords": [ "asymptotic bounds", "privileged words", "occurs exactly twice", "non-empty proper prefix", "letter alphabet" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }