{ "id": "2206.14067", "version": "v1", "published": "2022-06-28T15:09:45.000Z", "updated": "2022-06-28T15:09:45.000Z", "title": "Number of solutions to $a^x + b^y = c^z$, A Shorter Version", "authors": [ "Reese Scott", "Robert Styer" ], "categories": [ "math.NT" ], "abstract": "For relatively prime integers $a$ and $b$ both greater than one and odd integer $c$, there are at most two solutions in positive integers $(x,y,z)$ to the equation $a^x + b^y = c^z$. There are an infinite number of $(a,b,c)$ giving exactly two solutions.", "revisions": [ { "version": "v1", "updated": "2022-06-28T15:09:45.000Z" } ], "analyses": { "subjects": [ "11D61" ], "keywords": [ "shorter version", "relatively prime integers", "odd integer", "infinite number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }