{ "id": "2206.13977", "version": "v1", "published": "2022-06-28T13:02:42.000Z", "updated": "2022-06-28T13:02:42.000Z", "title": "Some characterizations of the complex projective space via Ehrhart polynomials", "authors": [ "Andrea Loi", "Fabio Zuddas" ], "comment": "10 pages", "categories": [ "math.DG" ], "abstract": "Let $P_{\\lambda\\Sigma_n}$ be the Ehrhart polynomial associated to an intergal multiple $\\lambda$ of the standard symplex $\\Sigma_n \\subset \\mathbb{R}^n$. In this paper we prove that if $(M, L)$ is an $n$-dimensional polarized toric manifold with associated Delzant polytope $\\Delta$ and Ehrhart polynomial $P_\\Delta$ such that $P_{\\Delta}=P_{\\lambda\\Sigma_n}$, for some $\\lambda \\in \\mathbb{Z}^+$, then $(M, L)\\cong (\\mathbb{C} P^n, O(\\lambda))$ (where $O(1)$ is the hyperplane bundle on $\\mathbb{C} P^n$) in the following three cases: 1. arbitrary $n$ and $\\lambda=1$, 2. $n=2$ and $\\lambda =3$, 3. $\\lambda =n+1$ under the assumption that the polarization $L$ is asymptotically Chow semistable.", "revisions": [ { "version": "v1", "updated": "2022-06-28T13:02:42.000Z" } ], "analyses": { "subjects": [ "53C55", "32Q15", "32T15" ], "keywords": [ "ehrhart polynomial", "complex projective space", "characterizations", "dimensional polarized toric manifold", "standard symplex" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }