{ "id": "2206.13931", "version": "v1", "published": "2022-06-28T12:05:55.000Z", "updated": "2022-06-28T12:05:55.000Z", "title": "Unlimited lists of fundamental units of quadratic fields -- Applications", "authors": [ "Georges Gras" ], "comment": "26 pages. Elementary subject about real quadratic fields with new algorithms using given PARI programs", "categories": [ "math.NT" ], "abstract": "We use the polynomials $m_s(t) = t^2 - 4 s$, $s \\in \\{-1, 1\\}$, in an elementary process giving arbitrary large lists of {\\it fundamental units} of quadratic fields of discriminants listed in ascending order. More precisely, let $\\mathbf{B} \\gg 0$; then as $t$ grows from $1$ to $\\mathbf{B}$, for each {\\it first occurrence} of a square-free integer $M \\geq 2$, in the factorization $m_s(t) =: M r^2$, the unit $\\frac{1}{2} \\big(t + r \\sqrt{M}\\big)$ is the fundamental unit of norm $s$ of $\\mathbb{Q}(\\sqrt M)$, even if $r >1$ (Theorem 4.1). Using $m_{s\\nu}(t) = t^2 - 4 s \\nu$, $\\nu \\geq 2$, the algorithm gives arbitrary large lists of {\\it fundamental solutions} to $u^2 - M v^2= 4s\\nu$ (Theorem 4.11). We deduce, for $p>2$ prime, arbitrary large lists of {\\it non $p$-rational} quadratic fields (Theorems 6.3, 6.4, 6.5) and of degree $p-1$ imaginary fields with non-trivial $p$-class group (Theorems 7.1,7.2). PARI programs are given to be copied and pasted.", "revisions": [ { "version": "v1", "updated": "2022-06-28T12:05:55.000Z" } ], "analyses": { "keywords": [ "fundamental unit", "quadratic fields", "unlimited lists", "process giving arbitrary large lists", "elementary process giving arbitrary large" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }