{ "id": "2206.13126", "version": "v1", "published": "2022-06-27T09:08:04.000Z", "updated": "2022-06-27T09:08:04.000Z", "title": "Ergodicity of the Wang--Swendsen--Kotecký algorithm on several classes of lattices on the torus", "authors": [ "Jesús Salas", "Alan D. Sokal" ], "comment": "26 pages, pdflatex, and 22 pdf figures", "categories": [ "cond-mat.stat-mech", "math-ph", "math.CO", "math.MP" ], "abstract": "We prove the ergodicity of the Wang--Swendsen--Koteck\\'y (WSK) algorithm for the zero-temperature $q$-state Potts antiferromagnet on several classes of lattices on the torus. In particular, the WSK algorithm is ergodic for $q\\ge 4$ on any quadrangulation of the torus of girth $\\ge 4$. It is also ergodic for $q \\ge 5$ (resp. $q \\ge 3$) on any Eulerian triangulation of the torus such that one sublattice consists of degree-4 vertices while the other two sublattices induce a quadrangulation of girth $\\ge 4$ (resp.~a bipartite quadrangulation) of the torus. These classes include many lattices of interest in statistical mechanics.", "revisions": [ { "version": "v1", "updated": "2022-06-27T09:08:04.000Z" } ], "analyses": { "keywords": [ "ergodicity", "state potts antiferromagnet", "eulerian triangulation", "wsk algorithm", "sublattice consists" ], "note": { "typesetting": "PDFLaTeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }