{ "id": "2206.12438", "version": "v1", "published": "2022-06-24T18:00:56.000Z", "updated": "2022-06-24T18:00:56.000Z", "title": "Entanglement Entropy of Non-Hermitian Eigenstates and the Ginibre Ensemble", "authors": [ "Giorgio Cipolloni", "Jonah Kudler-Flam" ], "comment": "5 pages, 2 figures", "categories": [ "cond-mat.stat-mech", "hep-th", "quant-ph" ], "abstract": "Entanglement entropy is a powerful tool in characterizing universal features in quantum many-body systems. In quantum chaotic Hermitian systems, typical eigenstates have near maximal entanglement with very small fluctuations. Here, we show that for Hamiltonians displaying non-Hermitian many-body quantum chaos, modeled by the Ginibre ensemble, the entanglement entropy of typical eigenstates is greatly suppressed. The entropy does not grow with the Hilbert space dimension for sufficiently large systems and the fluctuations are of equal order. We derive the novel entanglement spectrum that has infinite support in the complex plane and strong energy dependence. Similar behavior is found in the non-Hermitian Sachdev-Ye-Kitaev model, indicating the general applicability of the Ginibre ensemble to dissipative many-body quantum chaos.", "revisions": [ { "version": "v1", "updated": "2022-06-24T18:00:56.000Z" } ], "analyses": { "keywords": [ "entanglement entropy", "ginibre ensemble", "non-hermitian eigenstates", "displaying non-hermitian many-body quantum chaos", "hamiltonians displaying non-hermitian many-body quantum" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }