{ "id": "2206.12302", "version": "v1", "published": "2022-06-24T13:54:28.000Z", "updated": "2022-06-24T13:54:28.000Z", "title": "The quantitative distribution of Hecke eigenvalues of Maass forms", "authors": [ "Moni Kumari", "Jyoti Sengupta" ], "journal": "Res. Number Theory, 2022", "categories": [ "math.NT" ], "abstract": "Let $f$ be a normalized Hecke-Maass cusp form of weight zero for the group $SL_2(\\mathbb Z)$. This article presents several quantitative results about the distribution of Hecke eigenvalues of $f$. Applications to the $\\Omega_{\\pm}$-results for the Hecke eigenvalues of $f$ and its symmetric square sym$^2(f)$ are also given.", "revisions": [ { "version": "v1", "updated": "2022-06-24T13:54:28.000Z" } ], "analyses": { "keywords": [ "hecke eigenvalues", "maass forms", "quantitative distribution", "normalized hecke-maass cusp form", "symmetric square sym" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }