{ "id": "2206.11609", "version": "v1", "published": "2022-06-23T10:36:48.000Z", "updated": "2022-06-23T10:36:48.000Z", "title": "Estimates for Robin $p$-Laplacian eigenvalues of convex sets with prescribed perimeter", "authors": [ "Vincenzo Amato", "Andrea Gentile", "Alba Lia Masiello" ], "categories": [ "math.AP" ], "abstract": "In this paper, we prove an upper bound for the first Robin eigenvalue of the $p$-Laplacian with a positive boundary parameter and a quantitative version of the reverse Faber-Krahn type inequality for the first Robin eigenvalue of the $p$-Laplacian with negative boundary parameter, among convex sets with prescribed perimeter. The proofs are based on a comparison argument obtained by means of inner sets, introduced by Payne, Weimberger and Polya.", "revisions": [ { "version": "v1", "updated": "2022-06-23T10:36:48.000Z" } ], "analyses": { "subjects": [ "46E30", "35A23", "35J92" ], "keywords": [ "convex sets", "prescribed perimeter", "laplacian eigenvalues", "first robin eigenvalue", "boundary parameter" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }