{ "id": "2206.11361", "version": "v1", "published": "2022-06-22T20:19:11.000Z", "updated": "2022-06-22T20:19:11.000Z", "title": "Parabolic Anderson model with rough noise in space and rough initial conditions", "authors": [ "Raluca M. Balan", "Le Chen", "Yiping Ma" ], "comment": "13 pages, 3 figures", "categories": [ "math.PR" ], "abstract": "In this note, we consider the parabolic Anderson model on $\\mathbb{R}_{+} \\times \\mathbb{R}$, driven by a Gaussian noise which is fractional in time with index $H_0>1/2$ and fractional in space with index $03/4$. Under a general condition on the initial data, we prove the existence and uniqueness of the mild solution and obtain its exponential upper bounds in time for all $p$-th moments with $p\\ge 2$.", "revisions": [ { "version": "v1", "updated": "2022-06-22T20:19:11.000Z" } ], "analyses": { "keywords": [ "parabolic anderson model", "rough initial conditions", "rough noise", "exponential upper bounds", "gaussian noise" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }