{ "id": "2206.11200", "version": "v1", "published": "2022-06-22T16:33:59.000Z", "updated": "2022-06-22T16:33:59.000Z", "title": "On a Refinement of the Non-Orientable $4$-genus of Torus Knots", "authors": [ "Joshua M. Sabloff" ], "comment": "10 pages, 5 figures", "categories": [ "math.GT" ], "abstract": "In formulating a non-orientable analogue of the Milnor Conjecture on the $4$-genus of torus knots, Batson developed an elegant construction that produces a smooth non-orientable spanning surface in $B^4$ for a given torus knot in $S^3$. While Lobb showed that Batson's surfaces do not always minimize the non-orientable $4$-genus, we prove that they always do minimize among surfaces that share their normal Euler number. We also completely determine the possible pairs of normal Euler number and first Betti number for non-orientable surfaces whose boundary lies in a class of torus knots for which Batson's surfaces are non-orientable $4$-genus minimizers.", "revisions": [ { "version": "v1", "updated": "2022-06-22T16:33:59.000Z" } ], "analyses": { "subjects": [ "57K10" ], "keywords": [ "torus knot", "normal euler number", "batsons surfaces", "refinement", "first betti number" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }