{ "id": "2206.10420", "version": "v1", "published": "2022-06-21T14:18:14.000Z", "updated": "2022-06-21T14:18:14.000Z", "title": "Regular models of hyperelliptic curves", "authors": [ "Simone Muselli" ], "comment": "48 pages. Comments are welcome", "categories": [ "math.NT" ], "abstract": "Let $K$ be a complete discretely valued field of residue characteristic not $2$ and $O_K$ its ring of integers. We explicitly construct a regular model over $O_K$ with strict normal crossings of any hyperelliptic curve $C/K:y^2=f(x)$. For this purpose, we introduce the new notion of ''MacLane cluster picture'', that aims to be a link between clusters and MacLane valuations.", "revisions": [ { "version": "v1", "updated": "2022-06-21T14:18:14.000Z" } ], "analyses": { "subjects": [ "11G20", "14H45", "14M25" ], "keywords": [ "hyperelliptic curve", "regular model", "maclane cluster picture", "strict normal crossings", "residue characteristic" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }