{ "id": "2206.09695", "version": "v1", "published": "2022-06-20T10:33:40.000Z", "updated": "2022-06-20T10:33:40.000Z", "title": "Almost resolvable even cycle systems of $(K_u \\times K_g)(λ)$", "authors": [ "S. Duraimurugan", "A. Shanmuga Vadivu", "A. Muthusamy" ], "comment": "20 pages", "categories": [ "math.CO" ], "abstract": "In this paper, we prove that almost resolvable $k$-cycle systems (briefly $k$-ARCS) of $(K_u \\times K_g)(\\lambda)$ exists for all $k \\equiv 0(mod \\ 4) $ with few possible exceptions, where $\\times$ represents tensor product of graphs.", "revisions": [ { "version": "v1", "updated": "2022-06-20T10:33:40.000Z" } ], "analyses": { "keywords": [ "cycle systems", "resolvable", "represents tensor product" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }