{ "id": "2206.09234", "version": "v1", "published": "2022-06-18T16:19:13.000Z", "updated": "2022-06-18T16:19:13.000Z", "title": "Analytic continuation of the Lerch zeta function", "authors": [ "Rintaro Kozuma" ], "categories": [ "math.CV", "math.NT" ], "abstract": "We give two results on the Lerch zeta function $\\Phi(z,\\,s,\\,w)$. The first is to give an explicitly brief proof providing both the analytic continuation of $\\Phi$ in $n$-variables $(n \\in \\{1,\\,2,\\,3\\})$ to maximal domains of holomorphy in $\\mathbb{C}^n$ and an extended formula for the special values of $\\Phi$ at non-positive integers in the variable $s$. The second is to show that Lerch's functional equation is essentially the same as Apostol's functional equation using the first result.", "revisions": [ { "version": "v1", "updated": "2022-06-18T16:19:13.000Z" } ], "analyses": { "keywords": [ "lerch zeta function", "analytic continuation", "apostols functional equation", "lerchs functional equation", "maximal domains" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }