{ "id": "2206.09134", "version": "v1", "published": "2022-06-18T07:08:56.000Z", "updated": "2022-06-18T07:08:56.000Z", "title": "A modular relation involving non-trivial zeros of the Dedekind zeta function, and the Generalized Riemann Hypothesis", "authors": [ "Atul Dixit", "Shivajee Gupta", "Akshaa Vatwani" ], "comment": "To appear in Journal of Mathematical Analysis and Applications", "categories": [ "math.NT" ], "abstract": "We give a number field analogue of a result of Ramanujan, Hardy and Littlewood, thereby obtaining a modular relation involving the non-trivial zeros of the Dedekind zeta function. We also provide a Riesz-type criterion for the Generalized Riemann Hypothesis for $\\zeta_K(s)$. New elegant transformations are obtained when $K$ is a quadratic extension, one of which involves the modified Bessel function of the second kind.", "revisions": [ { "version": "v1", "updated": "2022-06-18T07:08:56.000Z" } ], "analyses": { "keywords": [ "dedekind zeta function", "generalized riemann hypothesis", "non-trivial zeros", "modular relation", "number field analogue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }