{ "id": "2206.08283", "version": "v1", "published": "2022-06-16T16:28:54.000Z", "updated": "2022-06-16T16:28:54.000Z", "title": "Constructing the Constructible Universe Constructively", "authors": [ "Richard Matthews", "Michael Rathjen" ], "comment": "31 pages", "categories": [ "math.LO" ], "abstract": "We study the properties of the constructible universe, L, over intuitionistic theories. We give an extended set of fundamental operations which is sufficient to generate the universe over Intuitionistic Kripke-Platek set theory without Infinity. Following this, we investigate when L can fail to be an inner model in the traditional sense. Namely, we first show that, over Intuitionistic Zermelo-Fraenkel, it is possible for there to be an ordinal which is not in the constructible universe. Then we show that Constructive Zermelo-Fraenkel (even with the Power Set axiom) cannot prove that the Axiom of Exponentiation holds in L.", "revisions": [ { "version": "v1", "updated": "2022-06-16T16:28:54.000Z" } ], "analyses": { "subjects": [ "03E45", "03E70", "03D65", "03E10", "03F55" ], "keywords": [ "constructible universe", "intuitionistic kripke-platek set theory", "power set axiom", "fundamental operations", "intuitionistic zermelo-fraenkel" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }