{ "id": "2206.07709", "version": "v1", "published": "2022-06-15T17:58:41.000Z", "updated": "2022-06-15T17:58:41.000Z", "title": "On the Grothendieck ring of a quasireductive Lie superalgebra", "authors": [ "Maria Gorelik", "Vera Serganova", "Alexander Sherman" ], "comment": "43 pages; comments welcome!", "categories": [ "math.RT" ], "abstract": "Given a Lie superalgebra $\\mathfrak{g}$ and a maximal quasitoral subalgebra $\\mathfrak{h}$, we consider properties of restrictions of $\\mathfrak{g}$-modules to $\\mathfrak{h}$. This is a natural generalization of the study of characters in the case when $\\mathfrak{h}$ is an even maximal torus. We study the case of $\\mathfrak{g}=\\mathfrak{q}_n$ with $\\mathfrak{h}$ a Cartan subalgebra, and prove several special properties of the restriction in this case, including an explicit realization of the $\\mathfrak{h}$-supercharacter ring.", "revisions": [ { "version": "v1", "updated": "2022-06-15T17:58:41.000Z" } ], "analyses": { "keywords": [ "quasireductive lie superalgebra", "grothendieck ring", "maximal quasitoral subalgebra", "explicit realization", "natural generalization" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable" } } }