{ "id": "2206.07381", "version": "v1", "published": "2022-06-15T08:44:31.000Z", "updated": "2022-06-15T08:44:31.000Z", "title": "Pancyclicity in the Cartesian Product $(K_9-C_9 )^n$", "authors": [ "Syeda Afiya", "M Rajesh" ], "comment": "6 PAGES, 4 FIGURES", "categories": [ "math.CO", "cs.DM" ], "abstract": "A graph $G$ on $m$ vertices is pancyclic if it contains cycles of length $l$, $3\\leq l \\leq m$ as subgraphs in $G$. The complete graph $K_{9}$ on 9 vertices with a cycle $C_{9}$ of length 9 deleted from $K_{9}$ is denoted by $(K_{9}-C_{9})$. In this paper, we prove that $(K_{9}-C_{9})^{n}$, the Cartesian product of $(K_{9}-C_{9})$ taken $n$ times, is pancyclic.", "revisions": [ { "version": "v1", "updated": "2022-06-15T08:44:31.000Z" } ], "analyses": { "subjects": [ "05C38", "05C45", "G.2" ], "keywords": [ "cartesian product", "pancyclicity", "contains cycles", "complete graph" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }