{ "id": "2206.07342", "version": "v1", "published": "2022-06-15T07:55:13.000Z", "updated": "2022-06-15T07:55:13.000Z", "title": "Spectrality of Infinite Convolutions and Random Convolutions", "authors": [ "Wenxia Li", "Jun Jie Miao", "Zhiqiang Wang" ], "comment": "29 pages", "categories": [ "math.CA", "math.FA" ], "abstract": "In this paper, we study spectral measures whose square integrable spaces admit a family of exponential functions as an orthonormal basis. First, we characterize the spectrality of infinite convolutions generated by a sequence of admissible pairs. Next, we show that given finitely many admissible pairs, almost all random convolutions are spectral measures. Moreover, we give a complete characterization of spectrality of random convolutions for some special cases.", "revisions": [ { "version": "v1", "updated": "2022-06-15T07:55:13.000Z" } ], "analyses": { "subjects": [ "42C30", "28A80" ], "keywords": [ "random convolutions", "infinite convolutions", "spectrality", "study spectral measures", "square integrable spaces admit" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }