{ "id": "2206.07159", "version": "v1", "published": "2022-06-14T20:39:21.000Z", "updated": "2022-06-14T20:39:21.000Z", "title": "Weak solutions for stochastic differential equations with additive fractional noise", "authors": [ "Pedro J. Catuogno", "Diego S. Ledesma" ], "comment": "10pages", "categories": [ "math.PR" ], "abstract": "We give a new approach to prove the existence of a weak solution of \\[dx_t = f(t,x_t)dt + g(t)dB^H_t\\] where $B^H_t$ is a fractional Brownian motion with values in a separable Hilbert space for suitable functions $f$ and $g$. Our idea is to use the implicit function theorem and the scaling property of the fractional Brownian motion in order to obtain a weak solution for this equation.", "revisions": [ { "version": "v1", "updated": "2022-06-14T20:39:21.000Z" } ], "analyses": { "subjects": [ "60H15", "60G22", "60G18", "G.3" ], "keywords": [ "weak solution", "stochastic differential equations", "additive fractional noise", "fractional brownian motion", "implicit function theorem" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }