{ "id": "2206.06554", "version": "v1", "published": "2022-06-14T02:11:32.000Z", "updated": "2022-06-14T02:11:32.000Z", "title": "Minkowski inequality in Cartan-Hadamard manifolds", "authors": [ "Mohammad Ghomi", "Joel Spruck" ], "comment": "15 pages", "categories": [ "math.DG", "math.AP", "math.MG" ], "abstract": "Using harmonic mean curvature flow, we establish a sharp Minkowski type lower bound for total mean curvature of convex surfaces with a given area in Cartan-Hadamard 3-manifolds. This inequality also improves the known estimates for total mean curvature in hyperbolic 3-space. As an application, we obtain a Bonnesen-style isoperimetric inequality for surfaces with convex distance function in nonpositively curved 3-spaces, via monotonicity results for total mean curvature. This connection between the Minkowski and isoperimetric inequalities is extended to Cartan-Hadamard manifolds of any dimension.", "revisions": [ { "version": "v1", "updated": "2022-06-14T02:11:32.000Z" } ], "analyses": { "subjects": [ "53C20", "58J05", "52A38", "49Q15" ], "keywords": [ "cartan-hadamard manifolds", "total mean curvature", "minkowski inequality", "sharp minkowski type lower bound", "isoperimetric inequality" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }