{ "id": "2206.06449", "version": "v1", "published": "2022-06-13T20:13:05.000Z", "updated": "2022-06-13T20:13:05.000Z", "title": "Smooth rigidity for higher dimensional contact Anosov flows", "authors": [ "Andrey Gogolev", "Federico Rodriguez Hertz" ], "comment": "10 pages", "categories": [ "math.DS", "math.DG" ], "abstract": "We apply the matching functions technique in the setting of contact Anosov flows which satisfy a bunching assumption. This allows us to generalize the 3-dimensional rigidity result of Feldman-Ornstein~\\cite{FO}. Namely, we show that if two such Anosov flows are $C^0$ conjugate then they are $C^{r}$, conjugate for some $r\\in[1,2)$ or even $C^\\infty$ conjugate under some additional assumptions. This, for example, applies to $1/4$-pinched geodesic flows on compact Riemannian manifolds of negative sectional curvature. We can also use our result to recover Hamendst\\\"adt's marked length spectrum rigidity result for real hyperbolic manifolds.", "revisions": [ { "version": "v1", "updated": "2022-06-13T20:13:05.000Z" } ], "analyses": { "keywords": [ "higher dimensional contact anosov flows", "smooth rigidity", "marked length spectrum rigidity result" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }