{ "id": "2206.06148", "version": "v1", "published": "2022-06-13T13:30:41.000Z", "updated": "2022-06-13T13:30:41.000Z", "title": "2-semi-equivelar maps on the torus and Klein bottle with few vertices", "authors": [ "Anand Kumar Tiwari", "Yogendra Singh", "Amit Tripathi" ], "categories": [ "math.CO" ], "abstract": "The $k$-semi equivelar maps, for $k \\geq 2$, are generalizations of maps on the surfaces of Johnson solids to closed surfaces other than the 2-sphere. In the present study, we determine 2-semi equivelar maps of curvature 0 exhaustively on the torus and the Klein bottle. Furthermore, we classify (up to isomorphism) all these 2-semi equivelar maps on the surfaces with up to 12 vertices.", "revisions": [ { "version": "v1", "updated": "2022-06-13T13:30:41.000Z" } ], "analyses": { "subjects": [ "52B70", "52C20" ], "keywords": [ "klein bottle", "semi equivelar maps", "johnson solids", "isomorphism", "generalizations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }