{ "id": "2206.06006", "version": "v1", "published": "2022-06-13T09:50:48.000Z", "updated": "2022-06-13T09:50:48.000Z", "title": "Prescribing $Q$-curvature on even-dimensional manifolds with conical singularities", "authors": [ "Aleks Jevnikar", "Yannick Sire", "Wen Yang" ], "comment": "26 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "On a $2m$-dimensional closed manifold we investigate the existence of prescribed $Q$-curvature metrics with conical singularities. We present here a general existence and multiplicity result in the supercritical regime. To this end, we first carry out a blow-up analysis of a $2m$th-order PDE associated to the problem and then apply a variational argument of min-max type. For $m>1$, this seems to be the first existence result for supercritical conic manifolds different from the sphere.", "revisions": [ { "version": "v1", "updated": "2022-06-13T09:50:48.000Z" } ], "analyses": { "keywords": [ "conical singularities", "even-dimensional manifolds", "first existence result", "first carry", "prescribing" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }