{ "id": "2206.05545", "version": "v1", "published": "2022-06-11T15:21:04.000Z", "updated": "2022-06-11T15:21:04.000Z", "title": "Dynamical Localization for Random Band Matrices up to $W\\ll N^{1/4}$", "authors": [ "Giorgio Cipolloni", "Ron Peled", "Jeffrey Schenker", "Jacob Shapiro" ], "comment": "23 pages", "categories": [ "math-ph", "math.MP", "math.PR" ], "abstract": "We consider a large class of $N\\times N$ Gaussian random band matrices with band-width $W$, and prove that for $W \\ll N^{1/4}$ they exhibit Anderson localization at all energies. To prove this result, we rely on the fractional moment method, and on the so-called Mermin-Wagner shift (a common tool in statistical mechanics).", "revisions": [ { "version": "v1", "updated": "2022-06-11T15:21:04.000Z" } ], "analyses": { "keywords": [ "dynamical localization", "gaussian random band matrices", "fractional moment method", "large class", "anderson localization" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }