{ "id": "2206.04900", "version": "v1", "published": "2022-06-10T06:51:56.000Z", "updated": "2022-06-10T06:51:56.000Z", "title": "On the Unicity and the Ambiguity of Lusztig Parametrizations for Finite Classical Groups", "authors": [ "Shu-Yen Pan" ], "categories": [ "math.RT" ], "abstract": "The Lusztig correspondence is a bijective mapping between the Lusztig series indexed by the conjugacy class of a semisimple element $s$ in the connected component $(G^*)^0$ of the dual group of $G$ and the set of irreducible unipotent characters of the centralizer of $s$ in $G^*$. In this article we discuss the unicity and ambiguity of such a bijective correspondence. In particular, we show that the Lusztig correspondence for a classical group can be made to be unique if we require it to be compatible with the parabolic induction and the finite theta correspondence.", "revisions": [ { "version": "v1", "updated": "2022-06-10T06:51:56.000Z" } ], "analyses": { "subjects": [ "20C33" ], "keywords": [ "finite classical groups", "lusztig parametrizations", "lusztig correspondence", "finite theta correspondence", "conjugacy class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }