{ "id": "2206.04448", "version": "v1", "published": "2022-06-09T12:15:59.000Z", "updated": "2022-06-09T12:15:59.000Z", "title": "On the rightmost eigenvalue of non-Hermitian random matrices", "authors": [ "Giorgio Cipolloni", "László Erdős", "Yuanyuan Xu", "Dominik Schröder" ], "comment": "40 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We establish a precise three-term asymptotic expansion, with an optimal estimate of the error term, for the rightmost eigenvalue of an $n\\times n$ random matrix with independent identically distributed complex entries as $n$ tends to infinity. All terms in the expansion are universal.", "revisions": [ { "version": "v1", "updated": "2022-06-09T12:15:59.000Z" } ], "analyses": { "subjects": [ "60B20", "15B52" ], "keywords": [ "random matrix", "non-hermitian random matrices", "rightmost eigenvalue", "precise three-term asymptotic expansion", "independent identically distributed complex entries" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }