{ "id": "2206.00412", "version": "v1", "published": "2022-06-01T11:23:11.000Z", "updated": "2022-06-01T11:23:11.000Z", "title": "Quaternary quadratic forms with prime discriminant", "authors": [ "Jeremy Rouse", "Katherine Thompson" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "Let $Q$ be a positive-definite quaternary quadratic form with prime discriminant. We give an explicit lower bound on the number of representations of a positive integer $n$ by $Q$. This problem is connected with deriving an upper bound on the Petersson norm $\\langle C, C \\rangle$ of the cuspidal part of the theta series of $Q$. We derive an upper bound on $\\langle C, C \\rangle$ that depends on the smallest positive integer not represented by the dual form $Q^{*}$. In addition, we give a non-trivial upper bound on the sum of the integers $n$ excepted by $Q$.", "revisions": [ { "version": "v1", "updated": "2022-06-01T11:23:11.000Z" } ], "analyses": { "subjects": [ "11E20", "11F27", "11F30", "11E12" ], "keywords": [ "prime discriminant", "positive-definite quaternary quadratic form", "non-trivial upper bound", "explicit lower bound", "petersson norm" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }