{ "id": "2205.15189", "version": "v1", "published": "2022-05-30T15:43:27.000Z", "updated": "2022-05-30T15:43:27.000Z", "title": "Independence number of intersection graphs of axis-parallel segments", "authors": [ "Marco Caoduro", "Jana Cslovjecsek", "Michał Pilipczuk", "Karol Węgrzycki" ], "comment": "10 pages and 3 figures", "categories": [ "math.CO", "cs.CG", "cs.DM" ], "abstract": "We prove that for any triangle-free intersection graph of $n$ axis-parallel segments in the plane, the independence number $\\alpha$ of this graph is at least $\\alpha \\ge n/4 + \\Omega(\\sqrt{n})$. We complement this with a construction of a graph in this class satisfying $\\alpha \\le n/4 + c \\sqrt{n}$ for an absolute constant $c$, which demonstrates the optimality of our result.", "revisions": [ { "version": "v1", "updated": "2022-05-30T15:43:27.000Z" } ], "analyses": { "subjects": [ "52C15", "05B40", "90C27", "68W25", "G.2.2", "G.2.1" ], "keywords": [ "axis-parallel segments", "independence number", "triangle-free intersection graph", "absolute constant", "complement" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }