{ "id": "2205.14556", "version": "v1", "published": "2022-05-29T02:24:45.000Z", "updated": "2022-05-29T02:24:45.000Z", "title": "Tight bounds on a conjecture of Gallai", "authors": [ "Jun Gao", "Jie Ma" ], "categories": [ "math.CO" ], "abstract": "We prove that for $n>k\\geq 3$, if $G$ is an $n$-vertex graph with chromatic number $k$ but any its proper subgraph has smaller chromatic number, then $G$ contains at most $n-k+3$ copies of cliques of size $k-1$. This answers a problem of Abbott and Zhou and provides a tight bound on a conjecture of Gallai.", "revisions": [ { "version": "v1", "updated": "2022-05-29T02:24:45.000Z" } ], "analyses": { "keywords": [ "tight bound", "conjecture", "smaller chromatic number", "proper subgraph", "vertex graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }