{ "id": "2205.14260", "version": "v1", "published": "2022-05-27T22:37:55.000Z", "updated": "2022-05-27T22:37:55.000Z", "title": "A Note on the Fibonacci Sequence and Schreier-type Sets", "authors": [ "Hung Viet Chu" ], "comment": "5 pages, 0 figures", "categories": [ "math.CO" ], "abstract": "A set $A$ of positive integers is said to be Schreier if either $A = \\emptyset$ or $\\min A\\ge |A|$. For $n\\ge 1$, let $$\\mathcal{K}_n\\ :=\\ \\{A\\subset \\{1, \\ldots, n\\}\\,:\\, \\mbox{either }A = \\emptyset \\mbox{ or } (\\max A-1\\in A\\mbox{ and }\\min A\\ge |A|)\\}.$$ We give a combinatorial proof that for each $n\\ge 1$, we have $|\\mathcal{K}_n| = F_n$, where $F_n$ is the $n$th Fibonacci number. As a corollary, we obtain a new combinatorial interpretation for the sequence $(F_n + n)_{n=1}^\\infty$. Next, we give a bijective proof for the recurrence of the sequence $(|\\mathcal{K}_{n, p, q}|)_{n=1}^\\infty$ (for fixed $p\\ge 1$ and $q\\ge 2$), where $\\mathcal{K}_{n, p, q} = $ $$\\{A\\subset \\{1, \\ldots, n\\}\\,:\\, \\mbox{either }A = \\emptyset \\mbox{ or } (\\max A-\\max_2 A = p\\mbox{ and }\\min A\\ge |A|\\ge q)\\}$$ and $\\max_2 A$ is the second largest integer in $A$, given that $|A|\\ge 2$. Note that by definition, $\\mathcal{K}_{n, 1, 2} = \\mathcal{K}_{n}$ for all $n\\ge 1$.", "revisions": [ { "version": "v1", "updated": "2022-05-27T22:37:55.000Z" } ], "analyses": { "subjects": [ "11B39", "11B37", "11Y55" ], "keywords": [ "fibonacci sequence", "schreier-type sets", "second largest integer", "th fibonacci number", "combinatorial interpretation" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }