{ "id": "2205.13967", "version": "v1", "published": "2022-05-27T13:32:46.000Z", "updated": "2022-05-27T13:32:46.000Z", "title": "Feedback semiglobal stabilization to trajectories for the Kuramoto-Sivashinsky equation", "authors": [ "Sérgio S. Rodrigues", "Dagmawi A. Seifu" ], "comment": "18 subfigures", "categories": [ "math.OC" ], "abstract": "It is shown that an oblique projection based feedback control is able to stabilize the state of the Kuramoto-Sivashinsky equation, evolving in rectangular domains, to a given time-dependent trajectory. The number of actuators is finite and consists of a finite number of indicator functions supported in small subdomains. Simulations are presented, in the one-dimensional case, showing the stabilizing performance of the feedback control.", "revisions": [ { "version": "v1", "updated": "2022-05-27T13:32:46.000Z" } ], "analyses": { "subjects": [ "93D15", "93B52", "93C20", "35K58", "35K41" ], "keywords": [ "feedback semiglobal stabilization", "kuramoto-sivashinsky equation", "feedback control", "small subdomains", "time-dependent trajectory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }