{ "id": "2205.13372", "version": "v1", "published": "2022-05-26T13:53:30.000Z", "updated": "2022-05-26T13:53:30.000Z", "title": "Reverse Faber-Krahn inequality for the $p$-Laplacian in Hyperbolic space", "authors": [ "Mrityunjoy Ghosh", "Sheela Verma" ], "categories": [ "math.AP", "math.DG", "math.OC" ], "abstract": "In this paper, we study the shape optimization problem for the first eigenvalue of the $p$-Laplace operator with the mixed Neumann-Dirichlet boundary conditions on multiply-connected domains in hyperbolic space. Precisely, we establish that among all multiply-connected domains of a given volume and prescribed $(n-1)$-th quermassintegral of the convex Dirichlet boundary (inner boundary), the concentric annular region produces the largest first eigenvalue. We also derive Nagy's type inequality for outer parallel sets of a convex domain in the hyperbolic space.", "revisions": [ { "version": "v1", "updated": "2022-05-26T13:53:30.000Z" } ], "analyses": { "subjects": [ "58C40", "35P15", "35P30", "49R05" ], "keywords": [ "hyperbolic space", "reverse faber-krahn inequality", "concentric annular region produces", "derive nagys type inequality", "largest first eigenvalue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }