{ "id": "2205.12717", "version": "v1", "published": "2022-05-25T12:34:23.000Z", "updated": "2022-05-25T12:34:23.000Z", "title": "Reverse Faber-Krahn inequalities for Zaremba problems", "authors": [ "T. V. Anoop", "Mrityunjoy Ghosh" ], "comment": "17 pages", "categories": [ "math.AP", "math.OC" ], "abstract": "Let $\\Omega$ be a multiply-connected domain in $\\mathbb{R}^n$ ($n\\geq 2$) of the form $\\Omega=\\Omega_{\\text{out}}\\setminus \\bar{\\Omega_{\\text{in}}}.$ Set $\\Omega_D$ to be either $\\Omega_{\\text{out}}$ or $\\Omega_{\\text{in}}$. For $p\\in (1,\\infty),$ and $q\\in [1,p],$ let $\\tau_{1,q}(\\Omega)$ be the first eigenvalue of \\begin{equation*} -\\Delta_p u =\\tau \\left(\\int_{\\Omega}|u|^q \\text{d}x \\right)^{\\frac{p-q}{q}} |u|^{q-2}u\\;\\text{in} \\;\\Omega,\\; u =0\\;\\text{on}\\;\\partial\\Omega_D, \\frac{\\partial u}{\\partial \\eta}=0\\;\\text{on}\\; \\partial \\Omega\\setminus \\partial \\Omega_D. \\end{equation*} Under the assumption that $\\Omega_D$ is convex, we establish the following reverse Faber-Krahn inequality $$\\tau_{1,q}(\\Omega)\\leq \\tau_{1,q}({\\Omega}^\\bigstar),$$ where ${\\Omega}^\\bigstar=B_R\\setminus \\bar{B_r}$ is a concentric annular region in $\\mathbb{R}^n$ having the same Lebesgue measure as $\\Omega$ and such that (i) (when $\\Omega_D=\\Omega_{\\text{out}}$) $W_1(\\Omega_D)= \\omega_n R^{n-1}$, and $(\\Omega^\\bigstar)_D=B_R$, (ii) (when $\\Omega_D=\\Omega_{\\text{in}}$) $W_{n-1}(\\Omega_D)=\\omega_nr$, and $(\\Omega^\\bigstar)_D=B_r$. Here $W_{i}(\\Omega_D)$ is the $i^{\\text{th}}$ $quermassintegral$ of $\\Omega_D.$ We also establish Sz. Nagy's type inequalities for parallel sets of a convex domain in $\\mathbb{R}^n$ ($n\\geq 3$) for our proof.", "revisions": [ { "version": "v1", "updated": "2022-05-25T12:34:23.000Z" } ], "analyses": { "subjects": [ "35P15", "35P30", "49R05", "49Q10" ], "keywords": [ "reverse faber-krahn inequality", "zaremba problems", "concentric annular region", "nagys type inequalities", "first eigenvalue" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }