{ "id": "2205.12316", "version": "v1", "published": "2022-05-24T18:52:31.000Z", "updated": "2022-05-24T18:52:31.000Z", "title": "Upper bounds for the product of element orders of finite groups", "authors": [ "Elena Di Domenico", "Carmine Monetta", "Marialaura Noce" ], "comment": "10 pages", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group of order $n$, and denote by $\\rho(G)$ the product of element orders of $G$. The aim of this work is to provide some upper bounds for $\\rho(G)$ depending only on $n$ and on its least prime divisor, when $G$ belongs to some classes of non-cyclic groups.", "revisions": [ { "version": "v1", "updated": "2022-05-24T18:52:31.000Z" } ], "analyses": { "keywords": [ "element orders", "finite group", "upper bounds", "non-cyclic groups" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }