{ "id": "2205.12188", "version": "v1", "published": "2022-05-24T16:42:59.000Z", "updated": "2022-05-24T16:42:59.000Z", "title": "Gamma/Hadron Separation with the HAWC Observatory", "authors": [ "R. Alfaro", "C. Alvarez", "J. D. Álvarez", "J. R. Angeles Camacho", "J. C. Arteaga-Velázquez", "D. Avila Rojas", "H. A. Ayala Solares", "R. Babu", "E. Belmont-Moreno", "C. Brisbois", "K. S. Caballero-Mora", "T. Capistrán", "A. Carramiñana", "S. Casanova", "O. Chaparro-Amaro", "U. Cotti", "J. Cotzomi", "S. Coutiño de León", "E. De la Fuente", "C. de León", "R. Diaz Hernandez", "B. L. Dingus", "M. A. DuVernois", "M. Durocher", "J. C. Díaz-Vélez", "R. W. Ellsworth", "K. Engel", "C. Espinoza", "K. L. Fan", "M. Fernández Alonso", "N. Fraija", "D. Garcia", "J. A. García-González", "F. Garfias", "M. M. González", "J. A. Goodman", "J. P. Harding", "S. Hernandez", "B. Hona", "D. Huang", "F. Hueyotl-Zahuantitla", "P. Hüntemeyer", "A. Iriarte", "A. Jardin-Blicq", "V. Joshi", "S. Kaufmann", "G. J. Kundem A. Lara", "W. H. Lee", "J. Lee", "H. León Vargas", "J. T. Linnemann", "G. Luis-Raya", "J. Lundeen", "K. Malone", "V. Marandon", "O. Martinez", "J. Martínez-Castro", "J. A. Matthews", "P. Miranda-Romagnoli", "J. A. Morales-Soto", "A. Nayerhoda", "L. Nellen", "M. U. Nisa", "R. Noriega-Papaqui", "L. Olivera-Nieto", "N. Omodei", "A. Peisker", "Y. Pérez Araujo", "E. G. Pérez-Pérez", "C. D. Rho", "D. Rosa-González", "E. Ruiz-Velasco", "H. Salazar", "F. Salesa Greus", "A. Sandoval", "P. M. Saz Parkinson", "J. Serna-Franco", "A. J. Smith", "R. W. Springer", "O. Tibolla", "K. Tollefson", "I. Torres", "R. Torres-Escobedo", "R. Turner", "F. Ureña-Mena", "L. Villaseñor", "X. Wang", "I. J. Watson", "F. Werner", "E. Willox", "J. Wood", "A. Zepeda", "H. Zhou" ], "comment": "35 pages, 9 figures, published in Nuclear Instruments and Methods in Physics Research Section A", "categories": [ "astro-ph.HE", "astro-ph.IM", "hep-ex", "physics.ins-det" ], "abstract": "The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observes atmospheric showers produced by incident gamma rays and cosmic rays with energy from 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-ray sources using ground-based gamma-ray detectors like HAWC is to identify the showers produced by gamma rays or hadrons. The HAWC observatory records roughly 25,000 events per second, with hadrons representing the vast majority ($>99.9\\%$) of these events. The standard gamma/hadron separation technique in HAWC uses a simple rectangular cut involving only two parameters. This work describes the implementation of more sophisticated gamma/hadron separation techniques, via machine learning methods (boosted decision trees and neural networks), and summarizes the resulting improvements in gamma/hadron separation obtained in HAWC.", "revisions": [ { "version": "v1", "updated": "2022-05-24T16:42:59.000Z" } ], "analyses": { "keywords": [ "high altitude water cherenkov", "standard gamma/hadron separation technique", "hawc observatory records", "simple rectangular cut", "sophisticated gamma/hadron separation techniques" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }