{ "id": "2205.11608", "version": "v1", "published": "2022-05-23T20:13:09.000Z", "updated": "2022-05-23T20:13:09.000Z", "title": "On the reflexivity properties of Banach bundles and Banach modules", "authors": [ "Milica Lučić", "Enrico Pasqualetto", "Ivana Vojnović" ], "comment": "24 pages", "categories": [ "math.FA" ], "abstract": "In this paper we investigate some reflexivity-type properties of separable measurable Banach bundles over a $\\sigma$-finite measure space. Our two main results are the following: - The fibers of a bundle are uniformly convex (with a common modulus of convexity) if and only if the space of its $L^p$-sections is uniformly convex for every $p\\in(1,\\infty)$. - If the fibers of a bundle are reflexive, then the space of its $L^p$-sections is reflexive. These results generalise the well-known corresponding ones for Lebesgue-Bochner spaces.", "revisions": [ { "version": "v1", "updated": "2022-05-23T20:13:09.000Z" } ], "analyses": { "subjects": [ "18F15", "53C23" ], "keywords": [ "banach modules", "reflexivity properties", "finite measure space", "uniformly convex", "separable measurable banach bundles" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }