{ "id": "2205.11001", "version": "v1", "published": "2022-05-23T02:22:56.000Z", "updated": "2022-05-23T02:22:56.000Z", "title": "Concordance of spatial graphs", "authors": [ "Egor Lappo" ], "comment": "14 pages", "categories": [ "math.GT" ], "abstract": "We define smooth notions of concordance and sliceness for spatial graphs. We prove that sliceness of a spatial graph is equivalent to a condition on a set of linking numbers together with sliceness of a link associated to the graph. This generalizes the result of Taniyama for $\\theta$-curves.", "revisions": [ { "version": "v1", "updated": "2022-05-23T02:22:56.000Z" } ], "analyses": { "subjects": [ "57M15", "05C10", "57K10" ], "keywords": [ "spatial graph", "concordance", "define smooth notions", "equivalent", "linking numbers" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }