{ "id": "2205.10789", "version": "v1", "published": "2022-05-22T10:05:40.000Z", "updated": "2022-05-22T10:05:40.000Z", "title": "Some intersection theorems for finite sets", "authors": [ "Mengyu Cao", "Mei Lu", "Benjian Lv", "Kaishun Wang" ], "comment": "28 pages. arXiv admin note: text overlap with arXiv:2201.06339", "categories": [ "math.CO" ], "abstract": "Let $n$, $r$, $k_1,\\ldots,k_r$ and $t$ be positive integers with $r\\geq 2$, and $\\mathcal{F}_i\\ (1\\leq i\\leq r)$ a family of $k_i$-subsets of an $n$-set $V$. The families $\\mathcal{F}_1,\\ \\mathcal{F}_2,\\ldots,\\mathcal{F}_r$ are said to be $r$-cross $t$-intersecting if $|F_1\\cap F_2\\cap\\cdots\\cap F_r|\\geq t$ for all $F_i\\in\\mathcal{F}_i\\ (1\\leq i\\leq r),$ and said to be non-trivial if $|\\cap_{1\\leq i\\leq r}\\cap_{F\\in\\mathcal{F}_i}F|