{ "id": "2205.10452", "version": "v1", "published": "2022-05-20T22:26:39.000Z", "updated": "2022-05-20T22:26:39.000Z", "title": "Existence and limit behavior of least energy solutions to constrained Schrödinger-Bopp-Podolsky systems in $\\mathbb{R}^3$", "authors": [ "Gustavo de Paula Ramos", "Gaetano Siciliano" ], "comment": "16 pages", "categories": [ "math.AP" ], "abstract": "Consider the following Schr\\\"odinger-Bopp-Podolsky system in $\\mathbb{R}^3$ under an $L^2$-norm constraint, \\[ \\begin{cases} -\\Delta u + \\omega u + \\phi u = u|u|^{p-2},\\newline -\\Delta \\phi + a^2\\Delta^2\\phi=4\\pi u^2,\\newline \\|u\\|_{L^2}=\\rho, \\end{cases} \\] where $a,\\rho>0$ and our unknowns are $u,\\phi\\colon\\mathbb{R}^3\\to\\mathbb{R}^3$ and $\\omega\\in\\mathbb{R}$. We prove that if $20$ is sufficiently small (resp., sufficiently large), then this system admits a least energy solution. Moreover, we prove that if $20$ is sufficiently small, then least energy solutions are radially symmetric up to translation and as $a\\to 0$, they converge to a least energy solution of the Schr\\\"odinger-Poisson-Slater system under the same $L^2$-norm constraint.", "revisions": [ { "version": "v1", "updated": "2022-05-20T22:26:39.000Z" } ], "analyses": { "subjects": [ "35B38" ], "keywords": [ "energy solution", "constrained schrödinger-bopp-podolsky systems", "limit behavior", "norm constraint", "sufficiently small" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }