{ "id": "2205.09535", "version": "v1", "published": "2022-05-19T12:59:44.000Z", "updated": "2022-05-19T12:59:44.000Z", "title": "Anisotropic singular Neumann equations with unbalanced growth", "authors": [ "Nikolaos S. Papageorgiou", "Vicenţiu D. Rădulescu", "Dušan D. Repovš" ], "journal": "Potential Anal. 57:1 (2022), 55-82", "doi": "10.1007/s11118-021-09905-4", "categories": [ "math.AP" ], "abstract": "We consider a nonlinear parametric Neumann problem driven by the anisotropic $(p,q)$-Laplacian and a reaction which exhibits the combined effects of a singular term and of a parametric superlinear perturbation. We are looking for positive solutions. Using a combination of topological and variational tools together with suitable truncation and comparison techniques, we prove a bifurcation-type result describing the set of positive solutions as the positive parameter $\\lambda$ varies. We also show the existence of minimal positive solutions $u_\\lambda^*$ and determine the monotonicity and continuity properties of the map $\\lambda\\mapsto u_\\lambda^*$.", "revisions": [ { "version": "v1", "updated": "2022-05-19T12:59:44.000Z" } ], "analyses": { "subjects": [ "35J75", "35J60", "35J20" ], "keywords": [ "anisotropic singular neumann equations", "unbalanced growth", "nonlinear parametric neumann problem driven", "positive solutions", "parametric superlinear perturbation" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }