{ "id": "2205.08749", "version": "v1", "published": "2022-05-18T06:42:04.000Z", "updated": "2022-05-18T06:42:04.000Z", "title": "Convolution and square in abelian groups I", "authors": [ "Yves Benoist" ], "categories": [ "math.NT" ], "abstract": "We prove that on the cyclic groups of odd order d, there exist non zero functions whose convolution square f*f(2t) is proportional to their square f(t)^2 when the proportionality constant is given by an imaginary quadratic integer of norm d which is equal to 1 modulo 2. The proof involves theta functions on elliptic curves with complex multiplication.", "revisions": [ { "version": "v1", "updated": "2022-05-18T06:42:04.000Z" } ], "analyses": { "keywords": [ "abelian groups", "non zero functions", "imaginary quadratic integer", "elliptic curves", "odd order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }