{ "id": "2205.07392", "version": "v1", "published": "2022-05-15T22:39:42.000Z", "updated": "2022-05-15T22:39:42.000Z", "title": "Saturation for Small Antichains", "authors": [ "Irina Đanković", "Maria-Romina Ivan" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "For a given positive integer $k$ we say that a family of subsets of $[n]$ is $k$-antichain saturated if it does not contain $k$ pairwise incomparable sets, but whenever we add to it a new set, we do find $k$ such sets. The size of the smallest such family is denoted by $\\text{sat}^*(n, \\mathcal A_{k})$. Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan conjectured that $\\text{sat}^*(n, \\mathcal A_{k})=(k-1)n(1+o(1))$, and proved this for $k\\leq 4$. In this paper we prove this conjecture for $k=5$ and $k=6$. Moreover, we give the exact value for $\\text{sat}^*(n, \\mathcal A_5)$ and $\\text{sat}^*(n, \\mathcal A_6)$. We also give some open problems inspired by our analysis.", "revisions": [ { "version": "v1", "updated": "2022-05-15T22:39:42.000Z" } ], "analyses": { "subjects": [ "06A07", "05D05" ], "keywords": [ "small antichains", "saturation", "exact value", "open problems", "pairwise incomparable sets" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }