{ "id": "2205.06615", "version": "v1", "published": "2022-05-13T13:06:52.000Z", "updated": "2022-05-13T13:06:52.000Z", "title": "Fine Selmer groups of modular forms", "authors": [ "Sören Kleine", "Katharina Müller" ], "categories": [ "math.NT" ], "abstract": "We compare the Iwasawa invariants of fine Selmer groups of $p$-adic Galois representations over admissible $p$-adic Lie extensions of a number field $K$ to the Iwasawa invariants of ideal class groups along these Lie extensions. More precisely, let $K$ be a number field, let $V$ be a $p$-adic representation of the absolute Galois group $G_K$ of $K$, and choose a $G_K$-invariant lattice ${T \\subseteq V}$. We study the fine Selmer groups of ${A = V/T}$ over suitable $p$-adic Lie extensions $K_\\infty/K$, comparing their corank and $\\mu$-invariant to the corank and the $\\mu$-invariant of the Iwasawa module of ideal class groups in $K_\\infty/K$. In the second part of the article, we compare the Iwasawa $\\mu$- and $l_0$-invariants of the fine Selmer groups of CM modular forms on the one hand and the Iwasawa invariants of ideal class groups on the other hand over trivialising multiple $\\mathbb{Z}_p$-extensions of $K$.", "revisions": [ { "version": "v1", "updated": "2022-05-13T13:06:52.000Z" } ], "analyses": { "subjects": [ "11R23" ], "keywords": [ "fine selmer groups", "ideal class groups", "adic lie extensions", "iwasawa invariants", "number field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }