{ "id": "2205.06289", "version": "v1", "published": "2022-05-12T18:06:55.000Z", "updated": "2022-05-12T18:06:55.000Z", "title": "A remark on the Castelnuovo-Mumford regularity of powers of ideal sheaves", "authors": [ "Shijie Shang" ], "comment": "7 pages, to appear in the Journal of Pure and Applied Algebra", "categories": [ "math.AG" ], "abstract": "We show that a bound of the Castelnuovo-Mumford regularity of any power of the ideal sheaf of a smooth projective complex variety $X\\subseteq\\mathbb{P}^r$ is sharp exactly for complete intersections, provided the variety $X$ is cut out scheme-theoretically by several hypersurfaces in $\\mathbb{P}^r$. This generalizes a result of Bertram-Ein-Lazarsfeld.", "revisions": [ { "version": "v1", "updated": "2022-05-12T18:06:55.000Z" } ], "analyses": { "keywords": [ "castelnuovo-mumford regularity", "ideal sheaf", "smooth projective complex variety", "complete intersections", "hypersurfaces" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }