{ "id": "2205.06185", "version": "v1", "published": "2022-05-12T16:10:20.000Z", "updated": "2022-05-12T16:10:20.000Z", "title": "Extensions of the rational Cherednik algebra and generalized KZ functors", "authors": [ "Henry Fallet" ], "categories": [ "math.RT" ], "abstract": "Ginzburg, Guay, Opdam and Rouquier established an equivalence of categories between a quotient category of the category $\\mathcal{O}$ for the rational Cherednik algebra and the category of finite dimension modules of the Hecke algebra of a complex reflection group $W$. We establish two generalizations of this result. On the one hand to the extension of the Hecke algebra associated to the normaliser of a reflection subgroup and on the other hand to the extension of the Hecke algebra by a lattice.", "revisions": [ { "version": "v1", "updated": "2022-05-12T16:10:20.000Z" } ], "analyses": { "subjects": [ "20C08" ], "keywords": [ "rational cherednik algebra", "generalized kz functors", "hecke algebra", "finite dimension modules", "complex reflection group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }