{ "id": "2205.04576", "version": "v1", "published": "2022-05-09T21:48:25.000Z", "updated": "2022-05-09T21:48:25.000Z", "title": "Towards the Generalized Riemann Hypothesis using only zeros of the Riemann zeta function", "authors": [ "William D. Banks" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "For any real $\\beta_0\\in[\\tfrac12,1)$, let ${\\rm GRH}[\\beta_0]$ be the assertion that for every Dirichlet character $\\chi$ and all zeros $\\rho=\\beta+i\\gamma$ of $L(s,\\chi)$, one has $\\beta\\le\\beta_0$ (in particular, ${\\rm GRH}[\\frac12]$ is the Generalized Riemann Hypothesis). In this paper, we show that the validity of ${\\rm GRH}[\\frac{9}{10}]$ depends only on certain distributional properties of the zeros of the Riemann zeta function $\\zeta(s)$. No conditions are imposed on the zeros of nonprincipal Dirichlet $L$-functions.", "revisions": [ { "version": "v1", "updated": "2022-05-09T21:48:25.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "11M20" ], "keywords": [ "riemann zeta function", "generalized riemann hypothesis", "distributional properties", "nonprincipal dirichlet", "dirichlet character" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }