{ "id": "2205.03034", "version": "v1", "published": "2022-05-06T06:21:41.000Z", "updated": "2022-05-06T06:21:41.000Z", "title": "A combinatorial description of shape theory", "authors": [ "Pedro J. Chocano", "Manuel A. MorĂ³n", "Francisco R. Ruiz del Portal" ], "comment": "20 pages, 7 figures", "categories": [ "math.GN", "math.AT", "math.CO" ], "abstract": "We give a combinatorial description of shape theory using finite topological $T_0$-spaces (finite partially ordered sets). This description may lead to a sort of computational shape theory. Then we introduce the notion of core for inverse sequences of finite spaces and prove some properties.", "revisions": [ { "version": "v1", "updated": "2022-05-06T06:21:41.000Z" } ], "analyses": { "subjects": [ "06A11", "06A07", "54C56", "55P55" ], "keywords": [ "combinatorial description", "computational shape theory", "finite spaces", "finite partially ordered sets", "inverse sequences" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }