{ "id": "2205.02275", "version": "v1", "published": "2022-05-04T18:23:03.000Z", "updated": "2022-05-04T18:23:03.000Z", "title": "Poset Ramsey Number $R(P,Q_n)$. II. Antichains", "authors": [ "Christian Winter" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "For two posets $(P,\\le_P)$ and $(P',\\le_{P'})$, we say that $P'$ contains a copy of $P$ if there exists an injective function $f\\colon P'\\to P$ such that for every two $X,Y\\in P$, $X\\le_P Y$ if and only if $f(X)\\le_{P'} f(Y)$. Given two posets $P$ and $Q$, let the poset Ramsey number $R(P,Q)$ be the smallest integer $N$ such that any coloring of the elements of an $N$-dimensional Boolean lattice in blue or red contains either a copy of $P$ where all elements are blue or a copy of $Q$ where all elements are red. We determine the poset Ramsey number $R(A_t,Q_n)$ of an antichain versus a Boolean lattice for small $t$ by showing that $R(A_t,Q_n)=n+3$ for $3\\le t\\le \\log \\log n$.", "revisions": [ { "version": "v1", "updated": "2022-05-04T18:23:03.000Z" } ], "analyses": { "subjects": [ "06A07", "05D10" ], "keywords": [ "poset ramsey number", "dimensional boolean lattice", "smallest integer", "injective function", "red contains" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }